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The emergence of antibiotic resistance in a wide variety of important pathogens of humans presents a
worldwide threat to public health. This paper describes recent work on the use of mathematical models of
the emergence and spread of resistance bacteria, on scales ranging from within the patient, in hospitals
and within communities of people. Model development starts within the treated patient, and pharmaco-
kinetic and pharmacodynamic principles are melded within a framework that mirrors the interaction
between bacterial population growth, drug treatment and the immunological responses targeted at the
pathogen. The model helps identify areas in which more precise information is needed, particularly in the
context of how drugs in£uence pathogen birth and death rates (pharmacodynamics). The next area
addressed is the spread of multiply drug-resistant bacteria in hospital settings. Models of the transmission
dynamics of the pathogen provide a framework for assessing the relative merits of di¡erent forms of inter-
vention, and provide criteria for control or eradication. The model is applied to the spread of
vancomycin-resistant enterococci in an intensive care setting. This model framework is generalized to
consider the spread of resistant organisms between hospitals. The model framework allows for hetero-
geneity in hospital size and highlights the importance of large hospitals in the maintenance of resistant
organisms within a de¢ned country. The spread of methicillin resistant Staphylococcus aureus (MRSA) in
England and Wales provides a template for model construction and analysis. The ¢nal section addresses
the emergence and spread of resistant organisms in communities of people and the dependence on the
intensity of selection as measured by the volume or rate of drug use. Model output is ¢tted to data for
Finland and Iceland and conclusions drawn concerning the key factors determining the rate of spread
and decay once drug pressure is relaxed.
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1. INTRODUCTION

Genetic diversity is a characteristic of microbes, whether
their lifestyle is free-living or parasitic. The last few years
has seen rapid advances in our understanding of the
genetic diversity within bacterial populations and the
structures of the genetic codes of a series of important
species, including some major pathogens of humans such
as Mycobacterium tuberculosis (Cole et al. 1998). One aspect
of this genetic diversity and the potential for rapid evolu-
tion within bacteria that is of major public health signi¢-
cance worldwide is the emergence and spread of
antibiotic resistance in a wide variety of organisms that
infect humans, and birds plus mammal species within the
agricultural industry. Today many view the evolution and
spread of antibiotic resistance as the major public health
crisis of the late part of this century, with the evolution of
bacteria within hospital settings that are resistant to all
major antibiotics a distinct possibility in the very near
future.

The study of antibiotic resistance is a ¢eld that has
largely been the preserve of the microbiologist and the

infectious disease clinician responsible for the care of
patients with bacterial infections. Until recently, most
have had con¢dence in the pharmaceutical industry to
keep one step ahead of the microbe in terms of producing
new antibiotics that can combat infection by organisms
resistant to the previous generations of drugs. To date that
has certainly been the case. However, the rate of
discovery of new compounds has slowed considerably
over the past three decades, in part due to the very high
costs of research, development and testing prior to the
successful launch of a new antibiotic. In discussions of
how best to combat resistance or how to slow its spread,
the debates have largely centred on the microbiological
and clinical issues. Very few papers in this important ¢eld
address the key population genetic issues that underpin
an understanding of the evolution and spread of resistant
organisms (Bjo« rkmann et al. 1998; Stilianakis et al. 1998;
Blower et al. 1998; Levin et al. 1997; Austin et al. 1997a,b;
Bonhoe¡er et al. 1997; Schrag et al. 1997; Lenski 1997;
Lenski et al. 1994; Massad et al. 1993). An even smaller
number attempt to meld current understanding of the
transmission dynamics of bacteria in human communities
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(including hospitals), with the key population genetic
factors (Levin et al. 1997; Austin et al. 1999; Bonhoe¡er et
al. 1997). The number of publications that meld these two
areas, in combination with an understanding of the
mechanisms of the evolution of resistance, patterns of
drug consumption and the pharmacokinetics and phar-
macodynamics of de¢ned drugs and pathogens, can be
counted on one hand (Lipsitch & Levin 1997; Austin et al.
1998b).

The general issue is that an interdisciplinary approach
is needed to interpret correctly current patterns of
evolution and spread, plus address the issue of how best to
manage antibiotic resistance in both the healthcare and
community settings. Techniques and concepts from a wide
variety of di¡erent ¢elds must be harnessed, such as those
in pharmacology, microbiology, population genetics and
epidemiology. A powerful template to merge the methods
and concepts of these di¡erent ¢elds of scienti¢c study
can be constructed by the sensible use of simple and
complex mathematical models of the key biological
processes. The case for the use of a mathematical frame-
work is made even more compelling by the strong
existing traditions for the use of mathematical methods in
the ¢elds of pharmacology, population genetics and
epidemiology.

In this paper we present some recent research that
melds di¡erent components of these various ¢elds to
address problems at a series of di¡erent levels of study.
These include the evolution of resistance within the
treated host, the spread of resistance within and between
hospital settings, and the epidemiology and evolution of
resistance in communities of people. Our approach is the
use of simple mathematical templates and our aim is to
shed light on the key factors that control observed
patterns of antibiotic resistance and how drug use can be
tailored to slow the likelihood of evolution and rapid
spread. A central problem in management is the key
principle that the stronger the selective pressure, the more
rapid will be the pace of evolution to meet this pressure.
The frequency of antibiotic resistant organisms in a
de¢ned population of bacteria is invariably related to past
or current patterns of drug use. To alter frequency it is
necessary to change the direction of selection. How best
to do this will depend on the precise details of host,
bacteria and drug. However, a precise mathematical
template for study helps identify what needs to be
measured and the key processes determining observed
pattern.

2. WITHIN-HOST MODELS OF INFECTION AND

ANTIBIOTIC TREATMENT

The use of mathematical models for the analysis of
viral infections such as HIV has resulted in considerable
advances in our understanding of both disease progres-
sion and the impact of drug therapy (Ho et al. 1995;Wei et
al. 1995; Bonhoe¡er et al. 1996; Austin et al. 1998b). In the
case of bacterial infections, where within-host dynamics
is not so easily measurable, there have been fewer
advances (Lipsitch & Levin 1997). In the pharmacolo-
gical research literature, mathematical models of drug
absorption and elimination kinetics have been widely
used. This ¢eld of study is referred to as pharmacokinetics

(Rowland & Tozer 1995; Austin et al. 1998b). A large
amount of data are available on the pharmacokinetics of
antibiotic agents which can be usefully employed in math-
ematical models of bacterial infection and treatment. The
e¡ect of an antibiotic on the target pathogen usually
correlates with the concentration of the drug in the
habitat of the pathogens. The study of dynamical response
of the infectious agent in the presence of the drug is
termed pharmacodynamics (Lo« wdin et al. 1998; Aeschli-
mann et al. 1998; Berg et al. 1996; Hyatt et al. 1995;
Drusano et al. 1993) and provides the link between phar-
macokinetics and models of within host pathogen popula-
tion dynamics (Austin et al. 1998b).

(a) Pharmacokinetics and pharmacodynamics
Antibiotics may be administered either orally,

intramuscularly or intravenously, and the eventual
concentration of active drug at the site of infection will be
determined by the dose, the route of administration and
the dosage regimen. Dosage regimens are designed to
maintain drug concentrations at therapeutic levels, and
must balance issues of both toxicity and e¤cacy
(Rowland & Tozer 1995). For simplicity, we concentrate
on changes in the concentration, C(t), of a single
antibiotic given at a dose, D, to a host with volume of
distribution V such that C0 � D/V , where C0 is the initial
concentration. If absorption is rapid (i.e. can be ignored)
or the antibiotic is given intravenously, and elimination
follows ¢rst-order kinetics (as is common during the early
stages of elimination), then the plasma concentration at
time t is determined by

dC
dt
� ÿkC, (1)

C(t) � C0 exp(ÿ kt), (2)

where k is the elimination constant and the half-life of the
drug is t1=2 � ln (2)/k. Assuming doses are given at
discrete times t � 0, t � �, t � 2�, etc. then the concen-
tration immediately after i doses will be

Ci � C0
1ÿ r i

1ÿ r
, (3)

where r � exp(ÿ k�) is the decay factor. After several
doses the regimen reaches equilibrium and the concentra-
tion C(t) lies between the limits rCmax4C(t)4Cmax where
Cmax � C0R and R � 1=(1ÿ r) is called the accumula-
tion factor. Typically, the impact of a drug in a de¢ned
pathogen population saturates with increasing drug
concentration. Suggested reasons for this saturation
include metabolic e¡ects such as enzyme production and
a ¢xed number of sites where a drug can act on the
invading organism. We use the so-called Emax saturating
model, where if E is the e¡ect of the drug (e.g. per capita
death rate of the bacteria due to the action of the drug at
concentration C), then

E(C) � EmaxCn

Cn
50 � Cn

: (4)

Hence, Emax denotes the maximum e¡ect, C50 the concen-
tration at half e¡ect and n is a shape factor denoting the
slope of the curve.
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Many of the pharmacodynamic studies of antibiotic
e¡ect involve growth curves, in which an organism is
grown in varying concentrations of drug either in vitro or
in vivo (Lo« wdin et al. 1998; Aeschlimann et al. 1998; Berg
et al. 1996; Hyatt et al. 1995). In order to model these
growth curves we require a mathematical model of the
population growth of bacteria. If �(N) is the net growth
rate of a bacteria if N organisms are present (allowing for
density dependence) and �(C) the bacterial kill rate at
drug concentration C, then in the absence of any post
antibiotic e¡ect,

dN
dt
� �(N)ÿ �(C)N : (5)

For in vitro studies �(N) � �N(1ÿN=K) where K is a
carrying capacity determined by the experiment. This
simple model can be used to ¢t experimental data
providing a concentration^kill rate pharmacodynamic
curve (¢gure 1). In this dynamical model a minimum
inhibitory concentration (MIC) can be de¢ned as the
concentration which just inhibits bacterial growth i.e.
�(C) � �, or equivalently,
MIC � (1ÿ E)ÿ1=nC50 (6)

where E � �=� is the ratio of maximum kill rate to net
growth rate. For bacteriostatic antibiotics (e.g. macro-
lides) the net growth rate becomes a function of drug
concentration, �(C), however the conclusions from our
analyses will remain unchanged.

The e¡ects of antibiotic resistance will manifest them-
selves via the pharmacodynamics of antibiotic action.
Conventional measures of antibiotic resistance take the
form of MIC determination and categorization via break-
points. An increased MIC may be a result of any combi-
nation of three factors determined by the form of
equation (6). First, C50 may increase, thereby shifting the
overall curve to the right in a linear manner. Second, E
may decrease thereby reducing the peak bactericidal kill
rate, �. Third, the shape function, n may increase
(although this e¡ect will be minimal). Since pharmaco-
dynamic studies have thus far tended to focus on sensitive
organisms, the precise pharmacodynamic e¡ects of anti-

biotic resistance remain uncertain (¢gure 2). It is,
however, important that these e¡ects be quanti¢ed, as
they have profound in£uences on the usefulness of a
drug. For example, if C50 increases then the saturating
bactericidal kill rate � can still be reached (for a
su¤ciently high dose, D), hence clinical improvement
may be seen by doubling the dose of amoxicillin for
infections with reduced sensitivity (as proposed in Spain).
If, however, bactericidal activity is reduced, then no
increase in dose will ever be able to compensate for the
loss of sensitivity and the clinical lifetime of the drug
cannot be increased. Typical mechanisms for antibiotic
resistance may include e¥ux whereby the drug is
pumped out of the cell (e.g. Pseudomonas aeruginosa resis-
tance to imipenem (Livermore 1992)), altered target site
(e.g. penicillin-binding protein) and deactivation of the
drug by enzymes (e.g. beta-lactamase resistance) (see
Salyers & Whitt (1994) for further details). For drug
e¥ux the ¢rst pharmacodynamic e¡ect would appear
most likely, the drug is at a reduced concentration within
the cell. Where the target site is altered, increasing
concentration will obviously have little e¡ect. When a
drug is broken down by enzyme activity, increasing the
number of sites can restore sensitivity, as has been
demonstrated by the use of clavulanic acid added to
amoxicillin (Nahwani & Wood 1993).

(b) Mathematical models of antibiotic therapy
Pharmacodynamic models provides the ideal template

for constructing models of antibiotic therapy and the
emergence of resistance. Once the concentration^kill rate
curve is known, equation (5) can be solved under given
assumptions, such as exponential growth of the bacteria
in the absence of a drug, multiple dosing, multiple strains
and the in£uence of acquired immunity. We use the
complete Emax model throughout and begin by consid-
ering the e¡ects of multiple dosing during exponential
growth (Lipsitch & Levin 1997). Dividing equation (5) by
N , gives the simpli¢ed form

d lnN
dt
� �ÿ �Cn

0 exp(ÿ kn(t ÿ t0))
Cn
50 � Cn

0 exp(ÿ kn(t ÿ t0))
, (7)
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Figure 1. In vitro pharmacodynamic e¡ect of imipenem killing
of Pseudomonas aeruginosa at concentrations of 0, 4 and 64mg lÿ1.
Data are shown from Berg et al. (1996). Parameters used are
� � 1:6 hÿ1, N(0) � 105, K � 3:2� 109 CFU (colony forming
unit), � � 4 hÿ1, C50 � 3mg lÿ1, n � 1:2. Imipenem is
eliminated from the system with constant k � 0:054 hÿ1.

Figure 2. Concentration^kill rate curve for imipenem
killing of Pseudomonas aeruginosa, with MIC for sensitive
(MIC� 2mg lÿ1) and resistant strains showing the e¡ects
of (i) increased C50 (MIC =10 times sensitive value), and
(ii) reduced saturating kill rate, �. Pharamacodynamic
parameters are as ¢gure 1. Increased C50 resistance implies
that increasing the dose can always give therapeutic
concentrations (toxicity issues aside).



which has the general solution

N(t)�N(t0) exp(���
Cn
50 � Cn

0 exp(ÿ kn(t ÿ t0))
Cn
50 � Cn

0

� ��=kn

.

(8)

If treatment occurs at discrete times (as in the
multiple dosing regimen), then the change in lnN,
D lnNi � lnNi�1 ÿ lnNi, after dose i (i.e. t � (i� 1)�) is
given by

D lnNi � �� �
�

kn
ln

Cn
50(1ÿ r)n � Cn

0r n(1ÿ r)ni

Cn
50(1ÿ r)n � Cn

0(1ÿ r)ni

� �
. (9)

Therapeutic regimens require that D lnNi40 (as an
absolute minimum), which gives a threshold concen-
tration C05Cmin for a given decay parameter, r
� exp(ÿ k�),

Cmin(i) �MIC
1ÿ r

1ÿ r i�1

� �
(1ÿ E)(1ÿ r nE)

r nE ÿ r n

� �1=n

, (10)

depending on dose i. For the ¢rst dose

Cmin(0) �MIC
(1ÿ E)(1ÿ r nE)

r nE ÿ r n

� �1=n

, (11)

and at equilibrium (i!1) Cmin(1) � Cmin(0)=R. For
example, suppose an antibiotic is given every half-life
(R � 2) and E � 0:5 (i.e. MIC � C50) and n � 1. For the
¢rst dose Cmin(0) �MIC

���
2
p

for therapeutic bene¢t,
whereas once equilibrium is reached Cmin(1) �MIC=

���
2
p

.
Figure 3 shows the e¡ect of multiple dosing on the phar-
macodynamics of imipenem acting against Pseudomonas
aeruginosa (MIC�1mg lÿ1 and 10mg lÿ1). Elimination of
the antibiotic reduces the kill rate from a peak (determined
by both the dose and the MIC), and dosing returns the kill
rate back up the curve. Since the concentration is plotted
on a log scale and elimination is assumed to be ¢rst order
(i.e. exponential), the length of the curve is proportional to
time. Therapeutic regimens must keep the kill rate, �(C),
above the net growth rate, �, of the bacterium, which is
shown for the sensitive strain (MIC�1mg lÿ1). The resis-
tant strain (MIC�10mg lÿ1) will however show net
growth because the dose (and hence C0 � D/V) is below
the minimum required for therapeutic activity, Cmin.

(i) Dose splitting: the e¡ect of multiple dosing
Dosage regimens are typically expressed in the form

C�q� , i.e. a concentration C� given every time period �.
500mg of penicillin given every 6 h (500q6) could
equally be administered as 250mg every 3 h (250q3). We
write this as aC�qa� where a41. If a regimen is sub-
divided into 1/a subdoses at intervals � 0 � � /a then the
total log reduction in bacteria, D lnN(a) is given by

D lnN(a) �D lnN(a)j0!� 0 � D lnN(a)j� 0!2� 0

� . . .� D lnN(a)j(1ÿa)� 0=a!� 0=a .
(12)

Summing individual terms using equation (9) gives a
total log reduction

D lnN(a)

� �� � �

kn
ln
Y1=a
i�1

Cn
50(1ÿ r a)n � (r aaC0)

n(1ÿ r ia)n

Cn
50(1ÿ r a)n � (aC0)

n(1ÿ r ia)n
.

(13)

For ¢xed total drug, C0, and constant pharmacodynamics,
in the limit as � becomes large and r becomes small,

N(� ,a) ' N0 exp (��)
1

1� (aC0/C50)
n

� �� kna

: (14)

In other words, bacterial abundance in the patient is
reduced as a increases. The implications for antibiotic
therapy are that splitting a dose can maximize therapeutic
e¡ect, depending on pharmacodynamic parameters. This
has been demonstrated numerically (Lipsitch & Levin
1997), but equation (14) provides a clearer understanding
of the phenomenon.

(ii) The in£uence of acquired immunity
The assumption of exponential population growth is

only valid if density-dependent e¡ects such as competi-
tion for resources and e¡ect or immune responses are not
acting within the host. Acquired immunity means that
most community-acquired infections are self-limiting,
although morbidity may be considerable depending on
the degree to which immunological responses can control
pathogen growth. For example, in the absence of resistant
strains, if I(t) is the measure of the severity of immunolo-
gical responses directed at the pathogen (i.e. speci¢c Tor
B cells) at time t and 1/� is the average duration of the
immune response (i.e. e¡ector cell life expectancy), then

dN
dt
� �(N)N ÿ IN , (15)

dI
dt
� L(N)ÿ �I , (16)

where  is the per capita cell mediated immune e¡ect
(bactericidal activity) and L(N) the immune prolifer-
ation function in response to the abundance of the
invading bacteria. If L(N) � L0 (e.g. macrophage in-
vasion of a site of infection), and �(N) � � (exponential

/
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Figure 3. E¡ect of dosing on kill rate for sensitive
(MIC� 2mg lÿ1) and resistant (MIC� 20 mg lÿ1) strains.
First-order elimination means that time is proportional to
length of curve.



growth) then the exact solution of these equations is
possible:

N(t)�N(0)exp(�t)exp(ÿ xt � x(1ÿ exp(ÿ �t))/�), (17)

I(t) � I0(1ÿ exp (ÿ �t)), (18)

where I0 � L0/� is the maximum immune response and
x � I0/� is the ratio of immune killing to net bacterial
growth rate. If x41 then the immune response can
control the infection and the bacteria reach a maximum
population at a time

tmax �
1
�
ln

x
xÿ 1

, (19)

depending on the persistence of the immune response,
1/�. If bacterial growth is logistic, i.e. �(N) � �(1ÿ K/N)
clearance is also possible provided x41. Where the
immune response proliferates in response to the total
bacterial population we assume a saturating response of
the form

L(N) � L0 �
aIN

b� �N , (20)

where a is the maximum per capita proliferation rate, b is
the bacterial population which gives half the maximum
rate and � determines the form of proliferation (� � 0,1
with saturation when � � 1). Where resistant strains are
also present N � Ns �Nr. If some ¢tness cost is
associated with resistance (e.g. reduced growth rate,
�04�), the full model takes the form

dNs

dt
� �Ns ÿ �(C,MICs)Ns ÿ INs, (21)

dNr

dt
� �0Nr ÿ �(C,MICr)Nr ÿ INr, (22)

dI
dt
� L(N)ÿ �I . (23)

Numerical evaluation of these equations (¢gure 4) shows
that for self-limiting infections the overall immune
response, I(t), will be determined by both the degree of
resistance (measured by MICr) and the time elapsed
before treatment begins. For example, early treatment
will reduce the total bacterial population, N (i.e.
morbidity), and, in doing so, the resulting immune
response (thereby increasing susceptibility to subsequent
infections). The reduction in immunity, which is what
clears highly resistant strains, will also produce a propor-
tionately more resistant infection (albeit with reduced
morbidity), which may have transmission consequences
for other hosts. These consequences will be discussed in
greater detail in ½ 5.

3. TRANSMISSION DYNAMICS OF ANTIBIOTIC

RESISTANT PATHOGENS IN HOSPITALS

The continued evolution of antibiotic resistance in
common hospital pathogens presents an ever-increasing
threat to public health. Organisms once considered of low
invasive potential now give cause for concern in immuno-

compromised hosts. The recent emergence of vancomycin-
resistant enterococci (VRE) as a nosocomial pathogen is
a striking example of this new danger to vulnerable
patients. Treatment options are often limited to combining
antimicrobials or experimental compounds of unproven
e¤cacy. Other pathogens, such as Pseudomonas aeruginosa
and methicillin-resistant Staphylococcus aureus (MRSA),
have also developed multiple resistance and give even
greater cause for concern. Reports of MRSA strains with
reduced susceptibility to vancomycin (Hiramatsu et al.
1997; Tabaqchali 1997), suggest that unless there is a
return to conventional practices of infection control, with
its emphasis on reduced transmission, antibiotic therapy
may not be possible in the near future for some hospital
acquired infections.

Many factors contribute to make hospitals a favourable
environment for the development of resistance, not least
of which is the broad spectrum of antimicrobials used to
treat infection (Tenover & McGowan 1996). Another
important factor is the frequent mixing of patients and
health-care workers (HCWs)öfor whom asymptomatic
carriage is a potential threat. Although some emphasis
has been placed on the population dynamics of competi-
tion between resistant and susceptible bacteria (Massad et
al. 1993; Bonhoe¡er et al. 1997), little work has been
completed to date with regards to the transmission
dynamics of resistant infections within frameworks that
meld genetics and epidemiology (Austin et al. 1998a;
Sebille et al. 1997). Many hospital pathogens are capable
of colonizing patients without inducing overt sympto-
matic infection. This generated the belief that new
hospital outbreaks were a consequence of endogenous
activation from patient sources or environmental
contamination. However studies of bothVRE and fungal
pathogens have demonstrated that indirect transmission
via the hands of transiently contaminated HCWs is a very
important determinant of colonization and infection
(Sanchez et al. 1992; Bonten et al. 1996).

(a) Indirect transmission models of colonization
Patients are classi¢ed as either uncolonized (Xp) or

colonized (Yp). Given the rapid turnover in patients and
long duration of colonization, once colonized, patients are
assumed to remain so for the duration of their stay in the
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Figure 4. Within-host dynamic model of self-limiting bacterial
infection showing the e¡ects of antibiotic treatment (dashed
lines) on bacterial population size and acquired immunity.
Antibiotic treatment produces lower morbidity with lower
immunity. Parameters used are as in ¢gure 1 with �0 � 1:2 hÿ1,
 � 0:5 hÿ1, a � 0:2 hÿ1, b � 106, � � 1, � � 0:05 hÿ1, I0 � 0:1,
Ns(0) � 2� 104,Nr(0) � 2 and I(0) � I0.



ward or intensive-care unit (ICU). The number of HCWs
is assumed to be ¢xed (Nh), and HCWs are also assumed
to be either uncolonized (Xh) or transiently colonized
(Yh). The transmission dynamics can be described by four
ordinary di¡erential equations (¢gure 5):

dXp

dt
� (1ÿ �)Lÿ �Xp ÿ cbpYhXp, (24)

dYp

dt
� �Lÿ �Yp � cbpYhXp, (25)

dXh

dt
� ÿcbhYpXh � Yh, (26)

dYh

dt
� ÿ dXh

dt
, Xh � Yh � Nh, (27)

where L is the patient admission rate, � the prevalence of
colonization at admission, Dp � 1/� the average patient's
length of stay (LOS) (typically days), c is the HCW^
patient contact rate, bh and bp the respective probabilities
of transmission from patient!HCWand HCW!patient,
and Dh � 1/ the average duration of transient coloniza-
tion (typically hours).

Optimal use of available resources frequently requires
that available beds be always occupied (i.e. Xp � Yp

� Np � L/�). Under this assumption the respective colo-
nization prevalences for patients ( yp(t) � Yp(t)/Np) and
HCWs ( yh(t) � Yh(t)/Nh) are determined by the two
di¡erential equations:

dyp(t)
dt
� �(�� Rp yh(1ÿ yp)ÿ yp), (28)

dyh(t)
dt
� �0(Rh yp(1ÿ yh)ÿ yh), (29)

where Rh � bhcNpDh and Rp � mbpcNpDp are the respec-
tive HCW^patient and patient^HCW reproductive
numbers, and m � Np/Nh is the sta¡^patient ratio (typi-
cally 1:1 for ICUs and less for general wards). Because
transmission is via patient^HCW^patient, the overall
reproductive number for transmission, R0, takes the
composite form

R0 � mbpbh(cNp)
2DpDh. (30)

The endemic prevalences are given by

y�p(�)�
R0ÿ1��Rh�

������������������������������������������������������
(R0ÿ1��Rh)

2�4�(R0�Rh)
p

2(R0 � Rh)
,

(31)

y�h(�) �
Rhp�(�)

Rhp�(�)� 1
(32)

(¢gure 6). If new admissions are carefully screened and
colonized patients isolated from the ward (i.e. � � 0), the
closed system reduces to the Ross^Macdonald model for
malaria transmission (Anderson & May 1991), with
vector^host ratio m and biting rate a � cNp. The endemic
solution takes the simple symmetrical form

y�p(0) �
R0 ÿ 1
R0 � Rh

, y�h(0) �
R0 ÿ 1
R0 � Rp

. (33)

Where there is a considerable separation in time-scales
(as in this instance), there will be a large di¡erence in
endemic prevalences. Typically Rp � 1 and Rh � 1, only
the product R0 � RpRh must be greater than unity for
transmission. Therefore in endemic settings the model
predicts that y�p � y�h, providing one explanation of the
observational ¢nding that culturing the hands of HCWs
seldom provides pathogen isolates (Morris et al. 1995).

(i) Hand-washing
Hand-washing by HCWs between patient contacts

reduces the probability bp that they will transmit the
pathogen to their next patient. If p is the e¤cacy of hand-
washing protocols (equal to the compliance rate times the
e¤cacy/wash), then R0(p) � (1ÿ p)R0. Transmission can
be curtailed (and colonization eradicated) provided
R0(p)51, i.e. if p exceeds the threshold rate pc
� 1ÿ 1=R0 and new admissions are screened (� � 0).
Even if washing hands is 100% e¡ective, the threshold
compliance rate can be very high for modest values of R0.
Studies show reported compliance rates of 20^40%
(Albert & Condie 1981; Simmons et al. 1990; Doebbelling
et al. 1992). If R0 is in excess of 1.25^1.67, hand-washing
measures alone are unlikely to be su¤cient for controlling
endemic transmission.
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Figure 5. Mathematical framework for indirect
patient^HCW^patient transmission of colonizing bacteria
within an ICU. Prevalence of colonization on admission is
denoted by � (see text for equations).

Figure 6. Endemic colonization prevalence for patients, y�p , as
a function of admission prevalence, �. Admission of colonized
patients can stabilize transmission when the reproductive
number falls below unity. Where y�p4�, indirect transmission
can be implicated.



(ii) Management of HCWs
Introducing more HCWs into a ward can either reduce

or increase transmission levels, depending upon the
management of the ward. Where HCW resources are
limited, increasing the number of HCWs will increase
transmission due to an increased number of contacts
between HCWs and patients. Conversely in the ICU,
where resources are less limited, increasing the numbers
of HCWs reduces transmission because individual sta¡
workloads are reduced. Cohorting HCWs on a 1:1 basis
can provide a very e¡ective method of limiting trans-
mission. If q is the conditional probability that a HCW
returns to the same patient rather than visiting another
patient, then the e¡ective HCW^patient ratio
m(q) � m(1ÿ q). Using the same argument as above,
there is a threshold cohorting rate qc � 1ÿ 1=R0.
E¡ective measurement of cohorting rates have yet to be
reported. However given that 1:1 HCW^patient ratios are
not unusual in ICU settings, cohorting rates are likely to
exceed those of hand-washing providing a possible focus
for resource allocation (¢gure 7).

(b) Stochastic considerations
Since the number of HCWs and patients is typically

small (less than 30) in most hospital settings, stochastic
£uctuations will play an important role in determining
the course of an outbreak. When modelling any single
outbreak a full stochastic realization of equations (24)^(27)
is required (Renshaw 1991; Anderson & May 1991)
(¢gure 8a). Where there is a signi¢cant separation of
time-scales and the number of patients remains constant,
the quasi-steady state (QSS) approximation (dYh/dt ' 0)
can be used to reduce equations (24)^(27) to

dyp
dt
� ��� �R0 yp(1ÿ yp)

1� Rh yp
ÿ �yp: (34)

An explicit closed solution of this equation is only possible
in the limit Rh yp! 0, which is the logistic equation with
immigration of new infectives (Appendix A). In the
absence of colonized admissions (� � 0) the quasi-
equilibrium probability distribution �i, that i patients will
be endemically colonized, can be calculated (¢gure 8b).
Smaller wards and ICUs with few beds will have large
£uctuations in prevalence. For example, if R0 � 2 and

Np � 9 beds, the predicted 95% con¢dence region for y�p
is y�p ' 38:9� 46:2%. The magnitude of £uctuations
when patient numbers are small implies that identifying
trends in endemic settings, perhaps induced by changes in
management practices, will be very di¤cult.

(c) The emergence of resistance
The previous theoretical framework of indirect trans-

mission is equally applicable to both antibiotic-sensitive
and -resistant pathogens. However, it does not take into
account any measure of the selection pressure exherted by
antibiotic treatment.When more than one bacterial strain
is present the framework must be modi¢ed accordingly to
re£ect all available therapy combinations. For analytical
simplicity we retain the QSS approximation and take the
limit Rh ! 0 in the closed model of equation (34).

Within an ICU, the majority of patients will receive an
antibiotic, either as prophylaxis (e.g. digestive decon-
tamination) or for the treatment of overt infection (e.g.
vancomycin for staphylococcal wound infections). Anti-
biotic therapy may select for resistance by either of two
mechanisms. First, treatment may induce or select pre-
existing resistant organisms within a host (so-called
acquired resistance). Second, by killing o¡ the existing
host £ora, antibiotic treatment increases the susceptibility
to colonization by resistant bacteria. Patients who become
colonized with resistant £ora may then develop overt
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Figure 7. Threshold eradication criteria needed to eradicate
endemic colonization when � � 0 and infection control
practices are combined. Observed hand-washing compliances of
20^40% are unlikely to eradicate endemic colonization alone.

Figure 8. (a) Stochastic realization of the indirect
transmission model showing an outbreak stabilized by
colonized admissions. Parameters used are R0 � 2, Np � 9,
Nh � 9, c � 4:2 patient71 HCW71 day71, Dp � 7 days,
Dh � 1 h, bp � bh � 10%, L � 2 day71 and � � 0:05. Mean
occupancy is 84.8% and with mean endemic prevalence
49.8%. (b) Quasi-equilibrium probability distribution, �i,
that i patients will be endemically colonized assuming � � 0.



infection and subsequently have an increased LOS, which
in turn increases opportunities for further transmission.
Earlier work on antibiotic management has focused on
the e¡ects of treatment on reducing durations of infection,
as might be expected for upper respiratorytract infection
(Massad et al. 1993; Bonhoe¡er et al. 1997). We use a
similar framework to focus on the e¡ects in ICU settings.

(i) Single drug therapy
We begin by considering the case when only a single

antibiotic (or class of antibiotics if resistance patterns are
common) is in use. Using the QSS approximation and
assuming that all admitted patients are uncolonized
(� � 0), the prevalence of colonization for sensitive ( yp)
and resistant ( y0p) strains are determined by the equations

dyp
dt
� �yp(R0(1ÿ yp ÿ y 0p)ÿ 1)ÿ �a�yp, (35)

dy0p
dt
� �0y0p(R00(1ÿ yp ÿ y 0p)ÿ 1)� �a�yp, (36)

where a is the proportion of patient stay for which anti-
biotics are administered, � the probability of acquired
resistance during treatment and primes denote para-
meters for the resistant strain. Switching parameters, let y
denote the prevalence of colonization ( y � yp � y0p) and f
the frequency of resistance ( f � y0p/y), then

dy
dt
� y�(�R0(1ÿ f )� �0R00 f )(1ÿ y)ÿ �(1ÿ f )ÿ � 0f �,

(37)

df
dt
� f (1ÿ f )�(�0R00ÿ�R0)(1ÿ y)�D��� (1ÿ f )�a�, (38)

where D� � �ÿ �050. If transmission is una¡ected by
antibiotic treatment (e.g. infection control practices limit
the spread of both strains), df /dt can be solved exactly. If
f0 is the frequency of resistance at time t0, f is determined
by the logistic solution,

f (t) � ( f0 � E)exp(D�(1� E)(t ÿ t0)ÿ E(1ÿ f0)
(1ÿ f0)� ( f0 � E)exp(D�(1� E)(t ÿ t0)

: (39)

The parameter E measures the selective pressure of
acquired resistance (since there is no di¡erence in trans-
mission) and is determined by E � a�(1� 1/q), where q is
the percentage increase in LOS for resistantly colonized
patients (q � (D0p ÿDp)=Dp). In the limit � � 0 (no
acquired resistance), if f040 then f ! 1 and resistance
will tend to ¢xation at a rate independent of antibiotic
treatment. This is simply a consequence of resistantly
colonized patients remaining in the ICU longer and
therefore having a higher reproductive number (R004R0).
The characteristic time-scale for the ecological replace-
ment of sensitive colonization is of order 1=D�, irrespec-
tive of antibiotic consumption.Where antibiotic treatment
induces acquired resistance and no resistance is present at
time t0, the time for resistance to reach 50% of cases, T50

is given by

T50 �
ln (2� 1/E)
D�(1� E)

. (40)

Typically if D � 7 days, q � 25% (D0 � 1:25D), a � 80%
of patient stay and � � 10%, then E � 0:04 and D�
� 0:0286 week71, givingT50 � 48 days. Halving antibiotic
consumption increases T50 to 59 days, demonstrating that
ecological replacement of sensitive colonization is playing a
dominant role.

The selective transmission advantage antibiotic-
resistant strains have is likely to play a considerable role
in the overall emergence of resistance. If LOS is
una¡ected by antibiotic treatment (i.e. D� ' 0) and
acquired resistance minimal (� � 0), then

df
dt
� �f (1ÿ f )(R00 ÿ R0(a))(1ÿ y), (41)

where the reproductive number for resistant strains is
una¡ected by antibiotic treatment. For sensitive strains,
antibiotic treatment reduces the probability of acquisition,
bp during treatment. Hence if q is the percentage reduc-
tion in bp during treatment, bp(a) � (1ÿ a)bp � a(1ÿ q)bp
� bp(1ÿ aq). Therefore R0(a) � (1ÿ aq)R0 and resistant
strains will have a selective advantage provided
R005R0(a) or equivalently;

a5
1ÿ R00/R0

q
. (42)

Once this threshold is breached, resistance will increase
logistically until ¢xation. If y(0) � 1ÿ 1/R0(a) is the
initial endemic prevalence of colonization, and f0 ' 1/Np

(one resistant patient) then

T50 '
Dp ln (Np ÿ 1)
R00 ÿ R0(a)

: (43)

As an example, if R00 � R0(0) in the absence of antibiotic
therapy, then equation (42) is always satis¢ed and
resistant strains will always have a selective advantage.
Therefore, R00 ÿ R0(a) � aqR0, implying that if antibiotic
consumption is halved then the time to reach 50%
resistance (T50) will double.

(ii) Multiple drug policies
Introducing a second antibiotic (or class of antibiotics)

provides a greater scope for the management of the
evolution of drug resistance. Sensitive infections can be
treated with a choice of drug, but more importantly
patients with resistant organisms can also be treated
e¡ectively. If two drugs are in use then four possible resis-
tance patterns are possible, sensitive ( yp), resistant to
drug 1 ( y0p), resistant to drug 2 ( y00p) and resistant to both
drugs ( y000p ). Increasing the number of antibiotics gives a
maximum of 2N resistance patterns for N drugs used.
Retaining the constant population size and QSS approxi-
mations, the model for two antibiotics takes the form

dyp
dt
� �yp(R0(a1,a2)(1ÿ y)ÿ)ÿ �(a1�1 � a2�2)yp, (44)

dy0p
dt
� �0y0p(R00(a2)(1ÿ y)ÿ 1)��a1�1 yp ÿ �0a2�2 y0p, (45)

dy00p
dt
� �00y00p(R000(a1)(1ÿ y)ÿ1)� �a2�2 ypÿ �0a1�1 y00p, (46)
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dy000p
dt
� �000y000p (R0000 (1ÿ y)ÿ1)� �00a1�1 y00p � �0a2�2 y0p, (47)

where y � yp � y0p � y00p � y000p , ai denotes the consumption of
drug i, �i the rate of acquired resistance and we have
assumed that antibiotic treatement has no e¡ect for patients
with multiply resistant organisms. Competition for suscepti-
bles (1ÿ y) means that the strain with the highest e¡ective
reproductive number will eventually dominate, i.e.
y(t)!1ÿ1=max(R0(a1,a2),R00(a2),R000(a1),R0000 ). The overall
selection balance will be determined by precisely how the
two drugs are used and whether antibiotic resistance confers
a reduced transmission success. If antibiotic treatment is
100% e¡ective in reducing colonization (i.e. qi � 1) then
R00(a2) � R00(1ÿ a2) and R000(a1) � R000(1ÿ a1). The precise
in£uence on R0(a1,a2) depends on how the drug is used.
If a single drug treatment is used then R0(a1,a2)
�R0(1ÿ a1ÿ a2) with a1 � a241. If, however, multiple
antibiotics are used a1 � a2 may be greater than
unity and we take the maximal form R0(a1,a2)
� R0(1ÿmax(a1,a2)).

Figure 9 shows examples of intervention drug use
strategies. Sequential drug use, whilst retaining the
second antibiotic solely for resistant infections provides a
good method of retaining overall e¤cacy at the risk of
multiple resistance. This policy is, however, determined
by the rate of acquired resistance for each drug, the
relative LOS for resistant patients and whether multiply
resistant patients can be e¡ectively isolated. The e¡ective-
ness of rotating antibiotics at regular intervals depends on
the period of rotation; too frequent and resistance has no
time to decline, too infrequent and resistance may reach
endemic levels. It has been argued that the most e¤cient
policy is to use multiple therapy for all patients
(Bonhoe¡er et al. 1997). This has the advantage that the
risk of acquired resistance will be much lower (since
singly resistant strains are removed and multiple resis-
tance unlikely). However, this brings complications of
cost and possible side e¡ects. Provided multiply resistant
patients can be e¡ectively isolated (i.e. R0000 ' 0, e.g. by
removal from the ICU), careful management of resistance
is possible using both interventionist (e.g. cycling) and
non-interventionist (e.g. combination) policies.

4. EPIDEMIC SPREAD OF HOSPITAL OUTBREAKS OF

MRSA AND VRE

(a) Transmission model
The rapid dissemination of multiply resistant strains of

methicillin-resistant Staphylococcus aureus (MRSA) and
vancomycin-resistant enterococci (VRE) presents new
challenges to the treatment of hospital-acquired infection.
In England andWales the number of hospitals a¡ected by
epidemic MRSA has increased from 40 per month in
1993 to more than 100 per month in 1997 (PHLS 1997).
In New York City the transmission of VRE between
hospitals led to 38 out of 81 hospitals reporting VRE
outbreaks within three years (Frieden et al. 1993). The
recent emergence of VRE in hospitals in the UK is of
particular concern since vancomycin use is restricted to
the treatment of MRSA and other multiply resistant
infections. Nevertheless, epidemic strains of VRE were
¢rst detected in the UK in 1987, and as recently as 1995,

were detected in 47 hospitals (including 27 for the ¢rst
time) (PHLS 1996).

In many instances hospital outbreaks have proved both
expensive (in associated costs) and di¤cult to eradicate,
requiring careful surveillance and e¡ective infection
control measures (Cookson 1995; Boyce et al. 1995; Shay et
al. 1995; Cox & Conquest 1997). Each case of MRSA in
England and Wales was estimated to carry an additional
cost of »2500 in increased patient stay and additional
antimicrobial treatment (Mehtar 1995). The longer an
outbreak persists, the greater the likelihood that it may
spread between wards and eventually to other una¡ected
hospitals or into the community. Reductions in the dura-
tion of outbreaks and the transfer of colonized or infected
patients are therefore of the utmost importance during
the early stages of an epidemic, where greatest impact
can be achieved.

Since epidemiological data on hospital outbreaks of
VRE and MRSA are presently only available at a
hospital level (rather than number of patients a¡ected),
we begin with an epidemiological framework in which
hospitals are classi¢ed as either una¡ected (susceptible)
or having a con¢rmed outbreak (infectious). In the
immediate period post-outbreak, a hospital may be on
increased alert and less susceptible to subsequent
outbreaks (recovered^immune), although such e¡ects are
likely to be small. Outbreaks arise as a consequence of
either de novo spontaneous introduction, perhaps from a
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Figure 9. Emergence of multiple antibiotic resistance in an
intensive care unit under (a) single antibiotic use in which
resistant patients receive treatment with the second antibiotic,
and (b) antibiotic rotation at regular, six-month intervals.
E¡ective control of multiple resistance depends critically on
the isolation of multiply resistant patients from transmission.
Parameters used, R0 � R00 � R000 � 1:5, R00 � 1:1, Dp � 14 days
if multiply resistant and seven days otherwise, a � 50% of
patient stay, �1 � �2 � 1%. Prior to the introduction of
therapy, colonization is assumed endemic and sensitive to
both antibiotics.



background source such as a nursing home or the
community, at a per capita rate �, or by the transfer of
colonized patients and sta¡ between institutions. Once
con¢rmed, an outbreak persists for an average duration D
days, with eradication rate  � 1=D. We assume that the
total number of hospitals remains constant for the dura-
tion of the epidemic. If n(t) denotes the number of a¡ected
hospitals at time, t, and N is the total number of hospitals,
then n(t) is determined by the di¡erential equation

dn(t)
dt
� �(N ÿ n)� �n(N ÿ n)ÿ n: (48)

The transmission parameter, �, incorporates the preva-
lence of colonization in the source hospital, the transfer
rate between hospitals and the probability of establishing
an outbreak in the una¡ected hospital. Equation (48) is
the closed SIS model with immigration of infectives (see
Appendix A) and can be rewritten in terms of two new
parameters; growth rate, r � �N ÿ ( � �) and carrying
capacity, K � r=�,

dn(t)
dt
� �N � rn(1ÿ n=K). (49)

Data suggest that spontaneous outbreaks are rare for
MRSA (PHLS 1997; Austin & Anderson 1999), and we
take the limiting approximation �! 0, to obtain the
well-known logistic solution

n(t) � Kn0 exp (r(t ÿ t0))
n0 exp (r(t ÿ t0))� K ÿ n0

. (50)

It is helpful to make the transformation from ecological
parameters, r and K, to epidemiological parameters, R0

and D, where R0 � �ND is the number of secondary
outbreaks generated by the ¢rst primary outbreak, such
that R0 � N=(N ÿ K) and rD � K=(N ÿ K).
Once an epidemic has begun to take o¡, stochastic

£uctuations during the exponential phase are not very
important. However, as the number of a¡ected hospitals
approaches the endemic state (n� � K) £uctuations away
from the endemic state become signi¢cant, and it is
important to evaluate their magnitude (Appendix A).

Surveillance programmes and infection control prac-
tices can reduce both the transmission parameter �, and
outbreak duration D. Fractional changes in these key
parameters give corresponding changes in growth rate
and carrying capacity such that,

Dr
r
� 1� 1

rD

� �
D�
�
� 1
rD

DD
D

,

DK
K
� (N ÿ K)

D�
�
� DD

D

� �
.

(51)

Reductions in either transmission parameter or outbreak
duration will therefore be equally e¡ective in the long-
term reduction in carrying capacity. However, reductions
in transmission produce greater short-term reductions in
growth rate and lower incidences of new outbreaks.

(b) EMRSA-15 in England and Wales
Epidemic strains of MRSA are colonizing hospital

patients throughout England and Wales (PHLS 1997)

(¢gure 10a). Strain EMRSA-15 has become widely
disseminated and now accounts for over 100 a¡ected
hospitals per month. Assuming de novo introductions are
infrequent (� ' 0), maximum-likelihood techniques can
be used to estimate the three unknown parameters; r, K
and n0 � n(1993). Assuming a total of N � 400 hospitals
are at risk, the log likelihood, l is given by

l(r,K,n0) �
1
N

X
i

ni log (n(ti)=N � (N ÿ ni)

� log (1ÿ n(ti)=N),
(52)

�2 � 2�ldata ÿ l(r,K,n0)), (53)

where ni is the number of reported outbreaks at time ti
and i is summed over all available data points. Maxi-
mizing l(r,K,n0) gives r � 1:08yr71 (95% CI 0.94^1.20),
K � 158 hospitals (95% CI 143^173) and n(1993) � 13:2
(95% CI 10.8^15.6) hospitals (�2 � 42:34, � � 48 d.f.,
P � G(12�

2,12�)/G(
1
2�) � 0:703) (¢gure 10a). Converting to

epidemiological parameters, R0 � 1:66, with an average
outbreak duration, D � 219 days. These results serve to
highlight both the rapid spread and, more importantly,
persistence of EMRSA-15. Once the endemic state is
reached, stochastic £uctuations of up to � 30 either side
of K are predicted with £uctuation index �2K /hKi � 1:54
(¢gure 10b).
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Figure 10. (a) Predicted and observed (PHLS 1997) number
of EMRSA-15 outbreaks in England and Wales each month,
1992^1998. (b) Equilibrium probability distribution, �i, that
i hospitals will be a¡ected. Exact results are in excellent
agreement with the normal distribution approximation
(see Appendix B).



(c) Model re¢nements
(i) Hospital size

Heterogeneity in hospital size and organization may
have considerable in£uence on the transmission
dynamics. Subdividing hospitals by size, let Nk denote the
total number of hospitals with k beds (k may denote a
subclass) and nk the number with outbreaks. Then
N �Pk Nk and the number of hospitals with k beds
reporting outbreaks will be

dnk(t)
dt
� �k(Nk ÿ nk)� �k(Nk ÿ nk)ÿ knk, (54)

where �k �
P

l �klhl is the force of infection and �kl the
transmission parameter from a hospital with l beds to one
with k beds. Assuming that �k scales with size (i.e.
�k � k� or equivalently �kl � kl�=hki) whilst outbreak
duration D remains constant, at endemic equilibrium �
satis¢es (Anderson & May 1991)

1 � 1
hki2

X
l

l2�Kl

 � l�
. (55)

The reproductive number R0(k) is obtained in the limit
�! 0, hence

R0(k) �
�NDhk2i
hki2 : (56)

The reproductive number can be signi¢cantly greater
than the mean behaviour if the standard deviation
�2k � hk2i ÿ hki2 is much greater than the mean hki. So-
called s̀uperspreading hospitals' can therefore play a
disproportionate role. For England and Wales hospitals
are graded by NHS trust size (data not shown), rather
than number of beds and are accurately described by a
truncated normal distribution of the form

p(x) � exp (ÿ (xÿ �)2=2�2)
�

��������
�=2

p
(1� erf (�=2�))

, (57)

where p(x) is the probability a hospital will have x beds,
� � 432:5 and � � 410:7. The corresponding mean
available beds per trust is �x � 542:7 with variance
�2x � x2 ÿ x2 � 108 862. Using this classi¢cation gives
R0(k) � 1:39R0, if D remains constant or R0(k) � 2:32R0,
if D also scales with trust size (Austin & Anderson 1999).

(ii) Spatial spread
The simple model of hospital^hospital transmission

can be adapted spatially via either multiple patches (e.g.
regional health authorities) (Lloyd & May 1996) or
random di¡usion (Shigesada & Kawasaki 1997). Let
n(x,t) denote the density of a¡ected hospitals at time t
and coordinate x � (x, y). The random di¡usion model of
epidemic spread in two dimensions is expressed as

@n(x,t)
@t
� �(N ÿ n)� �n(N ÿ n)ÿ n� Dr2n, (58)

where D is the di¡usion coe¤cient. Exact solution of this
equation is not possible, although approximation of the expo-
nentially growing phase with � � 0 gives the radial solution

n(�,t) � n0
4�Dt

exp
(R0 ÿ 1)t

D
ÿ �2

4Dt

� �
, (59)

at time t and distance � from the primary outbreak. The
distribution at any given time is Gaussian, although the
density increases exponentially at large time-scales. A
wave of outbreaks will propagate from the primary
hospital with limiting velocity

c � 2

���������������������
D(R0 ÿ 1)

D

r
. (60)

Our estimates of the growth rate for EMRSA-15 suggest
that c ' 2:1

����
D
p

. Once more detailed information
becomes available about the spatial spread of various
EMRSA strains, theory may provide possible explana-
tions of why di¡erent strains have had very di¡erent
epidemic patterns, and how the present epidemic of VRE
might spread throughout England andWales.

5. ANTIBIOTIC RESISTANCE IN THE COMMUNITY

Although hospitals are rightly viewed as so-called `hot
zones' where selection of multiply resistant strains is most
common, the bulk of antibiotic consumption occurs in the
community. As already demonstrated, the primary
selection pressure driving changes in the frequency of
resistance is the volume of drug use. Establishing a
precise quantitative relationship between antibiotic
consumption and the frequency of resistance in
community settings has been di¤cult due to the lack of
longitudinal studies that record both resistance and
consumption patterns (Nissinen et al. 1995; Arason et al.
1996; Seppa« la« et al. 1997). In a study by Nissinen et
al. (1995) in Finland following the rapid emergence of
�-lactamase resistance in Moraxella catarrhalis, increasing
�-lactam consumption led to further increases in the
frequency of �-lactamase producing clinical isolates.
Many bacterial species, such as Escherichia coli, Haemo-
philus in£uenzae, Neisseria meningitidis, Moraxella catarrhalis,
Streptococcus pneumoniae and Staphylococcus aureus, exist as
commensals in their human hosts with asymptomatic
colonization. Arason et al. (1996) considered how the
rates of carriage and resistance of S. pneumoniae in
children in day-care centres were linked to antimicrobial
consumption. Reductions in selection pressure will lead to
reductions in resistance, although the time-scales may be
considerable. In Finland, reducing macrolide consump-
tion appears to have led to reductions in the frequency of
macrolide resistance in S. pyogenes (Seppa« la« et al. 1997).
Each of the studies has measured both antibiotic resis-
tance and selection pressure, providing an opportunity to
characterize the relationship between carriage, consump-
tion and resistance.

(a) A model of bacterial carriage and antibiotic
consumption

Few theoretical frameworks have examined the
coupling between population genetics, transmission
dynamics and antibiotic consumption (Austin et al. 1997,
1999; Levin et al. 1997). We begin by proposing a simple
mathematical framework in which a population of human
hosts experience colonization by a directly transmitted
commensal organism (such as S. pneumoniae orH. in£uenzae).
Antibiotic treatment is assumed to be prescribed indepen-
dently of colonization in response to overt infection by
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other strains or species that induce morbidity. In the
absence of `resistant' strains (where resistance will be more
clearly de¢ned later), hosts fall into one of four classes;
untreated-uncolonized (x), treated-uncolonized (X),
untreated-colonized ( y) and treated-colonized (Y)
(¢gure 11). The prevalence of each of these classes is deter-
mined by the di¡erential equations;

dx(t)
dt
� Lÿ �x( y� Y)ÿ �x� X � �yÿ �x, (61)

dy(t)
dt
� �x( y� Y)ÿ �y� Y ÿ (�� �)y, (62)

dX(t)
dt
� �(x�(1ÿ �)y)ÿ��X( y�Y)��Yÿ(X��)X,

(63)

dY(t)
dt
� ��y� ��X( y� Y)ÿ ( � �� �)Y , (64)

where � is the prescribing rate (per unit time), 1= the
average length of treatment (typically days) and � the
probability that treatment does not clear colonization.
The transmission dynamics of colonization are deter-
mined by �, the rate commensals are spread to other
hosts, � the protection a¡orded by treatment and 1=� the
average duration of colonization (typically months).
Demographics are described by L, the per capita birth^
immigration rate and 1=� the average duration hosts
remain in the community. For children in day-care
centres or the elderly in nursing homes 1=� may be
comparable with 1=�. For analytical simplicity we assume
that the number of hosts is ¢xed (i.e. L � �), hence
x� y� X � Y � 1 at all times. The basic reproductive
number is given by R0 � �=�0, where �0 � �� �. In the
absence of antibiotic therapy, a commensal can cause an
epidemic with probability 1ÿ 1=R0 and will become
established with endemic prevalence p � y� � 1ÿ 1=R0.

(i) Antibiotic consumption
Consumption of antibiotics is conventionally measured

in de¢ned daily doses per 1000 adults (DDDs/1000),
equivalent to the proportion of the community,
a � X � Y , receiving treatment at any time. For adults,
the equivalence is good and a ' 0:5^1%; however, for
children, where doses depend on age and consumption is

much greater (a ' 5%), the equivalence is poor (Austin et
al. 1999). For a constant population size, a is determined by

da(t)
dt
� �(1ÿ a)ÿ ( � �)a, (65)

which has the general solution

a(t) � �

��  � � (1ÿ exp (ÿ (��  � �)t)). (66)

Since typical treatment times are short compared to
colonization ( � �), a rapidly reaches the equilibrium
value a ' �= or equivalently; prescribing rate multiplied
by length of treatment. The simple assumptions about the
nature of antibiotic treatment lead to two endemic
extremes, depending on non-clearance rate, �, and reduced
susceptibility, �.

(ii) Antibiotic treatment clears and prevents colonization
Where commensals are fully susceptible to antibiotics,

treatment may both clear and prophylactically protect
against colonization completely (� � � � 0). Increasing
antibiotic consumption will therefore reduce the average
duration of colonization and the number of hosts who are
susceptible. The prophylactic properties of treatment
imply that the endemic state is given by

x�� 1
R0

1� �a
1ÿ a

� �
, y� � 1ÿaÿx�, X� � a, Y�� 0,

(67)

where � � (�� )=(�� �) is the ratio of length of
colonization to length of treatment (typically � � 1).
Eradication of a commensal from a population is possible
provided y�40, or equivalently a5ac( p) where p is the
prevalence without treatment ( p � 1ÿ 1=R0), and the
threshold consumption is given by

ac( p)�
1
2

�
( p� 1� �(1ÿ p))ÿ

�����������������������������������������
( p�1��(1ÿp))2ÿ4p

q �
.

(68)

For example, when 50% of hosts are colonized and � � 4,
a threshold ac � 15% of hosts must be treated at any time
(¢gure 12). Since a is typically much less than 100% and
� large, to O(a),

ac '
p

1� �(1ÿ p)
� R0 ÿ 1

R0 � �
, (69)

giving ac � 1=6 for the previous estimate.

(c) Antibiotic treatment has no e¡ect on colonization
Should antibiotic treatment leave colonization unchanged

(� � � � 1) (which may be the case where a commensal
is fully resistant or an antibiotic has very high speci¢city
and does not reach the colonization site), there is an abso-
lute separation between consumption and carriage such
that

x� �(1ÿ a)=R0, y� � (1ÿ a)(1ÿ 1=R0),

X� � a=R0, Y� � a(1ÿ 1=R0):
(70)

Where antibiotic consumption is low, treated-colonized
hosts (Y) always form a very small fraction of the whole
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Figure 11. Mathematical framework for bacterial
colonization by directly transmitted organisms incorporating
the e¡ects of antibiotic consumption. Antibiotics are
prescribed to a proportion, a, of the population and are
assumed to clear colonization in a proportion �1ÿ �� of
treated hosts (see text for equations).



and their contribution to transmission can in most
instances be ignored.

The true e¡ect of antibiotic treatment is likely to lie
between these two extremes.When a new antibiotic is ¢rst
introduced, � ' 0, implying that treatment will have a
considerable e¡ect on carriage. As the frequency of resis-
tance increases so too will �, eventually tending to unity
when resistance is complete. To incorporate the e¡ects of
resistance three possibilities can be considered. First, a
mean minimum inhibitory concentration (MIC) can be
de¢ned over the whole population. The clearance failure
rate must evidently be a function of MIC; low MICs will
lead to clearance, high MIC non-clearance. Resistance is
classically determined by break points, with the broad
distinctions; (S)ensitive, (I)ntermediate or (R)esistant
being made. Second, using microsimulation techniques, a
population-genetic approach can be used to model the
e¡ects of individual hosts. Competing selection takes place
within colonized hosts, and the relative ¢tness of sensitive
and resistant strains will be determined by whether indivi-
dual hosts are receiving treatment (Levin et al. 1997).
Finally additional resistant classes can be added to the
original framework to include untreated-resistant and
treated-resistant colonized hosts (Austin et al. 1997b).

(b) Non-clearance as a function of MIC
We have already seen how the MIC plays an important

role in determining the within-host outcome of antibiotic
therapy. Where doses maintain antibiotic concentrations
above MIC for su¤cient periods, clearance of bacteria
will result. For commensal organisms, which may colo-
nize other areas of the body aside from the pathogen of
interest, the MIC antibiotic concentration may be
di¡erent but the underlying criterion remains. The rate of
non-clearance is therefore a function of mean MIC (i.e.
�(m)). Since antibiotic activity is well described by the
Emax model, the non-clearance rate will also be deter-
mined by a saturating function of the form

�(m) � mn

mn � mn
50
, (71)

where m50 is the MIC at which only 50% of colonization is
cleared and n is a constant determined by the underlying

within host pharmacodynamics. If a partial di¡erential
equation approach is taken, x, y, X and Y become functions
of both time and MIC, such that equations (61)^(64) are
replaced by equations of the form

@x(m,t)
@t
� @x(m,t)

@m
dm
dt
�Lÿ �(m)x( y� Y)

ÿ �x� X � �(m)yÿ �x,
..
. ..

. ..
.

(72)

where parameters �, � , � and � become functions of m.
The mean MIC is given by

hm(t)i �
R1
0 dm0m0( y(m0,t)� Y(m0,t))R1
0 dm0( y(m0,t)� Y(m0,t))

, (73)

and the frequency of resistance takes the form

f (mr) �
R1
mr

dm0( y(m0,t)� Y(m0,t))R1
0 dm0( y(m0,t)� Y(m0,t))

, (74)

where mr is the breakpoint MIC determining resistance.
Evolution of the partial di¡erential equation system is
determined by the dynamics of the MIC, dm=dt. When
antibiotic treatment does not clear colonization, but
instead selects pre-existing bacteria with increased MIC
(so-called acquired resistance), the mean MIC will
increase. Any increase must, however, be density-
dependent because when the MIC is very large,
incremental changes in MIC following treatment failure
will be negligible. Increasing MIC may carry additional
metabolic costs (i.e. reduced ¢tness) and therefore with-
drawal of selection may cause a reversal of MIC with
some characteristic time-scale. The rate MIC increases is
dependent on the number of hosts who select for increased
MIC hence

dm
dt
� F (m)

Z 1
0

dm0�(m0)�(t)y(m0,t), (75)

where F (m) is a monotonically decreasing function of
MIC which incorporates the fact that the increase in m
becomes smaller as m becomes large.

Rather than solve the full equations, we make the
limiting assumption that only � is a function of m, and
that m describes the mean MIC in the population as a
whole. The principal limitation of this assumption is that
all information about the frequency of antibiotic resis-
tance is lost. Equations (61)^(64) remain unchanged with
the addition of a further equation for m of the form

dm
dt
� F (m) �m

ny(t)
mn � mn

50
. (76)

The system of equations exhibits limiting behaviour when
m� m50 and m� m50, i.e. � ' m=m50 and � ' 1,
respectively. Immediately after an antibiotic has been
introduced y(0) � y�(a) (equation (68)) and any density-
dependent e¡ects on MIC increase will be small. If n � 1,
m(t) takes the exponential form

m(t) ' m0 exp (F (m0)y
�(a)�t=m50) (77)

with an MIC doubling time, �m of
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Figure 12. Eradication threshold consumption, ac as a function
of endemic colonization prevalence and ratio of duration of
colonization to duration of treatment, �, assuming antibiotic
treatment clears and prevents colonization. Highly prevalence
commensals require extensive treatment rates for elimination.



�m �
m50 log 2
F (m0)y�(a)�

. (78)

Communities with higher colonization rates or antibiotic
consumption, will see faster emergence of strains with
elevated MICs. Once MICs are above m50 non-clearance
becomes much more frequent. It is here that density-
dependent e¡ects may be more clearly felt.Where there is
no e¡ect, m(t) increases linearly with time. When F (m)
decreases monotonically, an eventual upper bound is
placed on m.

Numerical solutions with parameter estimates typical
of penicillin-resistant Streptococcus pneumoniae (PRP);
R0 � 2, 1=� � 2months (Christenson et al. 1997),
� � 1 yr71, 1= � 5 days (a � 1:4%), m50 � 1 mgmlÿ1,
F (m) � 1 mgmlÿ1 give a doubling time of approximately
two years (¢gure 13). Exact calculation of F (m) requires
detailed longitudinal MIC data which has yet to be made
available. Resistant strains of S. pneumoniae are character-
ized by MIC in excess of 1 mgmlÿ1, suggesting that if
m�0� � m50=100, PRP carriage will become a problem
after 10^20 years of relatively intense selection.

(c) Explicit resistant classes
A second way of incorporating resistance is via the

introduction of an explicit second commensal strain,
which is assumed to either be resistant or at the very least
have reduced susceptibility (Austin et al. 1997, 1999a). A
further two classes of host are required: untreated-
resistant (z) and treated-resistant (Z). Since antibiotic
treatment is assumed to either clear sensitive strains or
induce acquired resistance (with probability �), the class
that is treated-sensitive (Y) is redundant. Resistance is
again assumed to be associated with some ¢tness cost,
although the precise nature of this cost is in the form of
reduced transmission success (measured by R00). Recalling
that the reproductive number is the product of trans-
mission rate and duration of carriage, resistant strains
may manifest themselves either via reduced trans-
missibility (lower �) or increased duration of carriage
(higher �), or both. A further measure of transmission
success is captured in the role of superinfection, i.e. the
net probability that a host colonized with a resistant
strain will revert to sensitive following contact with other

sensitively colonized hosts. Under these assumptions, the
two-strain model with antibiotic prescribing takes the
form

dx(t)
dt
� Lÿ�xyÿ�0xZ ÿ �x� X��y� �0zÿ �x, (79)

dy(t)
dt
� �xy� ��yzÿ (�� �� �) y, (80)

dz(t)
dt
� �0xZ ÿ ��yzÿ (�� �0 � �)z� Z, (81)

dX(t)
dt
��(x� (1ÿ�) y)ÿ��XZ � �0Z ÿ( � �)X,

(82)

dZ(t)
dt
� �(z� �y)� ��XZ ÿ ( � �0 � �)Z, (83)

where Z � z� Z and primes denote parameters for resis-
tant commensal strains. In the absence of resistance
endemic colonization is again given by equation (68),
with the threshold for eradication ac, unchanged.

(i) Relationship between antibiotic consumption and resistance
Using the simplifying assumption that antibiotic

consumption is low (a� 1), an approximate solution of
the model is possible (Appendix B). If non-clearance rates
are zero, two thresholds are de¢ned; aZ for emergence of
resistance, and ay for the eradication of sensitive
commensal (equivalent to ac). Coexistence requires only
that aZ4a4ay. Where there is no transmission ¢tness
cost (R00 � R0), ay � �ac and aZ � ay=(1� �) (¢gure 14).
The endemic frequency of resistance, f �(a), is related to
antibiotic consumption by the relationship

f �(a) � 1ÿ aZ=a
1ÿ aZ=ay

. (84)

Changes in antibiotic consumption, Da, will give corre-
sponding changes in resistance, Df �(a), such that
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Figure 13. Increasing MIC for Streptococcus pneumoniae over
time as a function of antibiotic treatment courses per year.
Parameters used are given in the text. The MIC doubling
time is approximately two years if 1.4% of host receive
antibiotic treatment at any time (� � 1 yr71).

Figure 14. Endemic frequency of resistance, f �(a) as a
function of antibiotic consumption, a. In the absence of
non-clearance (� � 0) two thresholds are de¢ned, aZ for the
emergence of resistance and ay for the eradication of sensitive
strains. Parameters used are R0 � 2, R00 � 2:6, � � 0:43,
1=� � 1=�0 � 1:1 months and 1=� � 72 months. Numerical
solution shows the e¡ect of treatment failure when � � 10ÿ2.



Df �(a)
f �(a)

� aZ
aÿ aZ

Da
a
, (85)

with limits Da=a � (ay ÿ a)=ay for the ¢xation of resis-
tance and Da=a � (aZ ÿ a)=a for its eradication. Small
changes in antibiotic consumption can therefore induce
considerable changes in resistance if consumption is su¤-
ciently close to either of the thresholds, aZ or ay.

(ii) Emergence of �-lactamase resistance in Moraxella catarrhalis
in Finland

Since 1977 M. catarrhalis resistance to �-lactams has
increased rapidly in Europe and the USA reaching 80^
85% (Berk et al. 1996). Studies in Finland using clinical
isolates from otitis media in children aged less than six
years show a rapid rise in resistance from 0% (n � 53) in
1978 to 57% (n � 115) in 1983. During this time �-lactam
antibiotic consumption was estimated to have remained
roughly constant at 5.5 DDDs/1000 adults (a � 0:55%)
(Nissinen et al. 1995). After the introduction of second
generation cephalosporins there followed a further 51%
increase in �-lactam consumption and an associated rise
in �-lactam resistance (¢gure 15). Parameter estimation is
done by minimizing a weighted least squares estimate
using multidimensional direction set methods (Press et al.
1992) and numerical realizations of the equations
(79)^(83). The approximate solution gives excellent agree-
ment where selection pressure is constant (1978^1985).

Parameter estimates give a � 3:8% or equivalently 38
DDDs/1000 children, which is in keeping with other
estimates of infant antibiotic consumption (Arason et al.
1996). It should be stressed that the parameters are for
children less than six years old and that evidently anti-
biotic consumption in children di¡ers widely from that of
the whole community. This non-equivalence presents an
important gap in our knowledge. Since children are the
largest consumers of antibiotics, conventional measures of
consumption fail to estimate the true selection pressure in
those with the highest rates of carriage. There is an
interplay between transmission success (R00=R0) and
superinfection. Resistant strains may have higher

transmission success (R005R0) but be susceptible to super-
infection by sensitive strains (� > 0).

6. DISCUSSION

The series of problems discussed in this paper are
broad, ranging from MIC levels within a treated patient
to the community-based frequency of drug resistance. In
each case mathematical models provide insights into the
interpretation of observed pattern and the management of
antibiotic resistance. The various models discussed re£ect
di¡ering degrees of sophistication in terms of the overall
goal of melding approaches from pharmacology, micro-
biology, population genetics and epidemiology. By
concentrating ¢rst on the within-host dynamics of treat-
ment and expanding into population-based epidemio-
logical models, it is possible to see how the the treatment of
the individual has implications for the wider population.
Our analyses demonstrate clearly the widely di¡ering

proximity of theory with experiment and observation. In
some cases, such as the spread and management of anti-
biotic resistance in an intensive care setting, estimates for
the values of key parameters and variables are often avail-
able. In other areas, such as the pharmacodynamics of
the interaction between speci¢c drugs and speci¢c
bacteria, data are sparse (particularly so for resistant
organisms). It is surprising that the level of quanti¢cation
is so high for the pharmacokinetic side, yet so sparse for
the pharmacodynamics. Models should help to stress how
important such measurements are to the evaluation and
management of antibiotic resistance. Speci¢cally, where
one or more drugs are used to treat a particular bacterial
infection, the design of treatment protocols to minimize
the likelihood of the emergence of resistance requires
much more precise pharmacodynamic data.

More generally, there are also important gaps in quan-
ti¢cation and measurement in the population genetic and
epidemiological areas. It again seems surprising that so
few studies have provided precise longitudinal data on the
frequency of resistance in a well-de¢ned sample of the
patient population, and concomittently, the volume of
drug consumption over time in that population. The
latter is the strength of selection and its precise measure-
ment is key to the interpretation of how the frequency of
resistance changes over time. Related to this issue is the
question of sampling. In general, too little thought has
been given to date on how best to monitor temporal
changes in the frequency of resistance to a particular drug
in de¢ned organisms. There is an urgent need for
concerted action internationally in this area, given the
globally mixing nature of the world's population today
and the speed with which antibiotic resistance can spread
from one country to another.

Once data are available, the use of mathematical
models provides a quantitative tool for possible scenario
analysis. An obvious example is the epidemiological
spread of multiply resistant bacteria between hospitals.
Once the key parameters have been estimated, questions
regarding the impact of intervention strategies (such as
surveillance and outbreak control) can be addressed in a
meaningful way. Understanding the dynamics of the
model provides additional information regarding imple-
mentation time-scales. For example, theory demonstates
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Figure 15. Prediction of a two-step rise in the frequency of
b-lactamase producing isolates of Moraxella catarrhalis
(Nissinen et al. 1995). Initial colonization is assumed to
be endemic with Z(0) � 0:002 and a � 37:7 DDDs/1000
children (4%). All other parameters are as in ¢gure 15. The
approximate solution (Appendix B) is in good agreement
with the numerical results prior to the introduction of
cephalosporins in 1986.



that the emergence time-scales for antibiotic resistance
will be much greater than that required for decline.

The gaps in data needs are of obvious importance in
the development of a robust theoretical framework and
all e¡orts should be made to increase awareness of their
existence. Indeed, one of the key roles of mathematical
model development in infectious disease research is the
identi¢cation of what needs to be measured to further
understanding and better organize control interventions.
In the ¢eld of antibiotic resistance, theory will certainly
¢ll this role. However, it is important to recognize that
even in the absence of a good observational database,
theory also helps to interpret observed pattern, facilitate
the development of better management practices and
create a template for interdisciplinary research. The latter
is of particular importance in developing an under-
standing of how best to slow the evolution and spread of
antibiotic resistant organisms.

D.J.A. and R.M.A. acknowledge theWellcomeTrust for ongoing
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APPENDIX A

(a) SIS with immigration
If a is the immigration rate of new infectives, the closed

SIS model takes the form

dn(t)
dt
� a� �R0(N ÿ n)n/N ÿ �n, (86)

or equivalently

dn(t)
dt
� a� rnÿ sn2, (87)

with growth rate r � �(R0 ÿ 1) and carrying capacity
K � N(1ÿ 1=R0) � r=s. Completing the square and
factorizing,

dn(t)
dt
� s(12K(1� �)ÿ (nÿ 1

2K))(12K(1� �)� (nÿ 1
2K)),

(88)

where

1� � �
��������������
1� 4a

rK

r
. (89)

With a change of variables, u(t) � n(t)ÿ 1
2K and

v � 1
2K(1� �), the general solution is

log
v� u(t)
vÿ u(t)

� �
� log

v� u(t0)
vÿ u(t0)

� �
� r(1� �)(t ÿ t0). (90)

Hence the ¢nal solution in terms of n(t) is obtained by
rearranging

n(t) � �(K � �K)(n0 � �K) exp (r(1� �)(t ÿ t0))

ÿ �K(K � �K ÿ n0)�=�(n0 � �K)

� exp (r(1� �)(t ÿ t0))� K � �K ÿ n0�,
(91)

where �K � 1
2�K. In the limiting case where immigration

rates are much smaller than transmission (i.e. 4a� rK),

�K
K
' a

rK
,

�r
r
� 2

�K
K

. (92)

(b) Stochastic SIS model without immigration
Setting a � 0, the stochastic version of the SIS model

can be written in terms of a probability equation for pi(t),
the probability that n(t) � i, such that

dpi(t)
�dt
�(i� 1)pi�1(t)� (R0i(1ÿ i=N)ÿ i)pi(t)

ÿ R0(iÿ 1)(1ÿ (iÿ 1)=N)piÿ1(t).
(93)

The quasi-equilibrium probabilities, �i can be obtained
after setting dpi=dt � 0, hence after rearrangement

(i�1)�i�1�R0i(1ÿi=N)�i� i�i�R0(iÿ1)(1ÿ(iÿ1)=N)�iÿ1.
(94)

Solution of this di¡erence equation gives

�i �
qiP
j qj

, qi�1 �
R0i(iÿ i=N)

i� 1
qi, q1 �

1
�
. (95)

The average time to extinction from an initial state, i,
�E(i) is approximately (Renshaw 1991) �E '

P
j qj, and

for a pure logistic process (birth rate� rn, death
rate� rn2=K), �E ' exp (K)=rK, with stability index
� � log (�E) ' K.

The quasi-equilibrium distribution, �i can be approxi-
mated by both normal and negative binomial distribu-
tions with stochastic mean, hKi, and variance, �2K,

hKi � N 1ÿ 1
R0

� �
ÿ 1
R0 ÿ 1

, �K �
N
R0

(96)

(see Renshaw (1991), chapter 3 for further details). The
magnitude of £uctuations is determined by �2K=hKi. If
1 < R0 < 2, the variance will be greater than the mean
and £uctuations considerable. Using the normal distri-
bution approximation for �i, the 95% con¢dence region
for the endemic prevalence k� � K=N is predicted to lie
in the range

k� ' 1ÿ 1
R0
ÿ 1
N(R0 ÿ 1)

� 1:96����������
R0N
p . (97)

Therefore large population sizes and high transmission
tend to reduce £uctuations in prevalence, whereas small
numbers (e.g. ICUs) may be subject to very large £uctua-
tions. Generalization of the transition region R0 ! 1 has
been done by incorporating a re£ecting state at rather
than the absorbing state p0 (Nasell 1997). This is perhaps
more characteristic of the case where immigration of new
infectives is important.

APPENDIX B. APPROXIMATE SOLUTION OF

ANTIBIOTIC CARRIAGE MODEL WITH RESISTANT

CLASSES

If antibiotic consumption is low (a� 1) and the
number of hosts remains constant, then
z(t) ' (1ÿ a)Z(t) and equations (79)^(83) simplify
giving

dy=dt � �yf y0(a)ÿ (1ÿ a)(1ÿ �)Z ÿ yg, (98)
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dZ=dt��0Zf(1ÿ1=R00)ÿy(1��0(1ÿ a))ÿZg��ay, (99)

where �� � �0�0 and y0(a), is the endemic colonization
prevalence in the absence of treatment, equation (67).
Non-clearance (� 6� 0) can maintain resistant commen-
sals at a frequency O(�) even where there is considerable
transmission ¢tness cost. The full coexisting endemic
state, ( y�,Z�) when � � 0, is given by

y�(a) � y0(a)ÿ (1ÿ a)(1ÿ �)(1ÿ 1=R0)
1ÿ (1ÿ a)(1ÿ �)(1� �0(1ÿ a))

,

Z� � 1ÿ 1
R00
ÿ y�(a)(1� �0(1ÿ a)).

(100)

Coexistence requires y0(a)5(1ÿ a)(1ÿ �)(1ÿ 1=R00) or
equivalently aZ4a4ay, where in the absence of any cost
of resistance (R00 � R0),

ay � �ac, aZ �
�ac

1� � . (101)

Using the quasi-steady state approximation (QSSA),
dy=dt ' 0, gives the relationship y(Z) ' y0 ÿ Z(1ÿ a)
�(1ÿ �), which after substitution reduces equation (99)
to a logistic equation with general solution

Z(t) � A(a)Z0 exp (A(a)(t ÿ t0))
A(a)� B(a)Z0( exp (A(a)(t ÿ t0))ÿ 1)

, (102)

where A(a) � �0�1ÿ 1=R00 ÿ y0(a)(1� �0(1ÿ a))� and
B(a) � �0�1ÿ (1ÿ a)(1ÿ �)(1� �0(1ÿ a))�. Hence the
frequency of resistance f (t,a) is given by

f (t,a) ��A(a)Z0 exp (A(a)(t ÿ t0))�
/f�A(a)Z0 exp (A(a)(t ÿ t0))� y0(a)

��A(a)�B(a)Z0(exp(A(a)(tÿt0))ÿ1)�g.
(103)

For emergence, typically a single host is initially colo-
nized (i.e. Z0 ' 1=Nhosts). If there is no transmission
¢tness cost of resistance, the time to reach 50% resis-
tance, �50 is

�50 �
1

��2Z�(a) log
y0(a)Z�(a)Nhosts

Z�(a)(2ÿ �)ÿ y0(a)
, (104)

where Z�(a) � A(a)=B(a). In the limit as t!1, the
endemic frequency of resistance, f �(a), takes the simple form

f �(a) � A(a)
�A(a)� y0(a)B(a)
� (aÿ aZ)

(aÿ aZ)�aZ
�R0(R

0
0ÿ1)� (R0 ÿ R00)

�0R00(R0ÿ1)� (R0 ÿ R00)
(1ÿ a=ay)

,

(105)

provided antibiotic consumption lies in the range
aZ4a4ay.
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